
         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Security-Review Report node_exporter 07.2020
Cure53, Dr.-Ing. M. Heiderich, MSc. D. Weißer, Dr. N. Kobeissi

Index
Introduction

Scope

Test Methodology

Phase 1: General security posture checks

Phase 2: Manual code auditing

Phase 1: General security posture checks

Application/Service/Project Specifics

Organization/Team/Infrastructure Specifics

Evaluating the Overall Posture

Phase 2: Manual code auditing & pentesting

Identified Vulnerabilities

PRM-02-002 Web: Reflected XSS on MSIE due to unsanitized parameter (Low)

PRM-02-005 TLS: Insecure TLS versions accepted (High)

Miscellaneous Issues

PRM-02-001 Web: General HTTP security headers missing (Medium)

PRM-02-003 Collectors: Denial-of-Service in textfile collector via FIFO file (Low)

PRM-02-004 Collectors: DoS in supervisord collector via invalid response (Low)

PRM-02-006 Web: Runtime profiling data exposed via pprof (Low)

Conclusions

Cure53, Berlin · 07/20/20                              1/20

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Introduction
“Prometheus exporter for hardware and OS metrics exposed by *NIX kernels, written in
Go with pluggable metric collectors.”

From https://github.com/prometheus/node_exporter

This report documents the findings of a security assessment targeting the Prometheus
node_exporter complex. Cure53 carried out this examination in summer 2020, revealing
six security-relevant issues on the scope. Enveloping a penetration test and an audit of
the security posture, the project notably focused not only on the node_exporter software,
but also its corresponding codebase and the relevant cryptographic components.

To give some context, the pentest and audit was requested by the maintainers of the
Prometheus project, yet the budget was granted by CNCF. The core testing work took
place in late June and early July 2020, precisely in CW27 and CW28. Given the nature
of the project and the usual process followed by Cure53 when working with CNCF, the
chosen methodology was white-box. All relevant code is available as open source and
Cure53 also got access to a demo instance integrating the software.

As  for  the  resources,  the  test  and  auditing  were  done  by  a  team of  three  Cure53
consultants  who  spent  a  total  of  ten days  on  the  project,  as  requested  by  the
Prometheus team. To best address the objectives of this engagement, the work was split
into  several  smaller  work  packages  (WPs).  Within  the  established  structure,  WP1
entailed a code audit of the node_exporter, covering all parts deemed as audit-worthy. In
WP2, Cure53 examined the general posture of the node_exporter, with the emphasis on
code  and  project.  Rounding  up  the  scope,  WP3  tackled  the  cryptographic  premise
connected to the TLS parts within the node_exporter complex.  

As can be seen, a major part of the test and auditing focus was directed to the codebase
and the cryptography- or TLS-related parts contained in these. The remaining effort went
into a security posture audit seen from a meta-level perspective. This included a high-
level look at the project’s closer perimeter,  security response mechanisms and other
high-level characteristics.

The project started on time and progressed efficiently. The communications during this
project were done using a dedicated and private Slack channel created on the Cure53’s
workspace. Relevant personnel from the Prometheus and node_exporter teams were
invited to join the discussions there. At the same time, not much communication was
needed, the scope was absolutely clear and Cure53 made good progress swiftly. Very
good  coverage  levels  were  reached.  Over  the  course  of  the  assessment,  Cure53

Cure53, Berlin · 07/20/20                              2/20

https://cure53.de/
https://github.com/prometheus/node_exporter
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

frequently  updated  the  Prometheus  team  about  the  findings  by  sending  over  the
headlines.

Moving on to the findings, the aforementioned total of six issues were spotted. Two were
classified  to  be  security  vulnerabilities  of  varying  impact  and  four  represent  general
weaknesses with lower exploitation potential. No issue reached a Critical severity during
tests and audits, though the severity levels given to the spotted problems range from
High  to  Low. One  of  the  most  pressing  problems,  for  instance,  marks  an  XSS
vulnerability which can only be exploited on MSIE while other browsers are not affected
by it to the best of Cure53’s knowledge.

In  the  following  sections,  the  report  will  first  shed  light  on  the  scope  and  key  test
parameters of this exercise. After that, a dedicated chapter will elaborate on the chosen
test methodology and coverage. Next, all findings will be discussed in a chronological
order  alongside  technical  descriptions,  as  well  as  PoC  and  mitigation  advice  when
applicable. Finally, the report will close with broader conclusions about this 2020 project.
Cure53 elaborates on the general impressions and reiterates the verdict based on the
testing  team’s  observations  and  collected  evidence.  Tailored  hardening
recommendations  and  meta-level  advice  concerning  improvements  that  could  prove
valuable for the Prometheus node_exporter project are also incorporated into the final
section.

Cure53, Berlin · 07/20/20                              3/20

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Scope
• Penetration Test & Code Audit against Prometheus node_exporter Tool

◦ WP1: node_exporter Code audit, covering the audit-worthy parts
▪ https://github.com/prometheus/node_exporter/tree/release-1.0  

◦ WP2: node_exporter General Posture Audit, covering Code & Project
◦ WP3: node_exporter Crypto audit for the TLS parts

• A Test-System was provided for Cure53
◦ https://demo.do.prometheus.io/  
◦ http://node.demo.do.prometheus.io:9100/  

Cure53, Berlin · 07/20/20                              4/20

https://cure53.de/
http://node.demo.do.prometheus.io:9100/
https://demo.do.prometheus.io/
https://github.com/prometheus/node_exporter/tree/release-1.0
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Test Methodology
The following paragraphs describe the metrics and methodologies used to evaluate the
security  posture  of  the  node_exporter  project  and  codebase.  In  addition,  it  includes
results for individual areas of the project’s security properties that were either selected
by Cure53 or singled out by other involved parties as needing closer inspection.

As with previous tests for CNCF, this assignment was also divided into two phases. The
general security posture and maturity of the audited code base - here of node_exporter -
has been examined in Phase 1. The usage of external frameworks has been audited,
security  constraints  for  node_exporter  configurations  were  examined  and  the
documentation  has  been  deeply  studied  in  order  to  get  a  general  idea  of  security
awareness  at  the  node_exporter  complex.  This  was  followed  by  research  into  how
security reports and vulnerabilities are handled and how seriously the entire standpoint
towards a healthy security infrastructure is taken. The latter phase covered actual tests
and audits against the node_exporter codebase, with the code quality and its hardening
being judged.

Phase 1: General security posture checks
As mentioned earlier, Phase 1 enumerated general qualities of the audited project. Here,
a meta-level perspective on the general security posture is reached by providing details
about  the  language  specifics,  configurational  pitfalls  and  general  documentation.  An
additional  view  on  how  node_exporter  handles  vulnerability  reports  and  how  the
disclosure process works is provided as well.  A perception rooted in the maturity of
node_exporter is given, solely from a wider, broad brush strokes perspective. Specific
impressions linked to the code quality relate to Phase 2 of the audit process.

Phase 2: Manual code auditing
For  this  component,  Cure53 performed a  small-scale  code review and attempted to
identify security-relevant areas of the project’s codebase and inspect them for flaws that
are usually present in distributed systems. This is an addition to the previous maturity
analysis and supplies a more detailed perspective on the project’s implementation when
it comes to security-relevant portions of the code. Still,  this Phase was limited by the
budget and cannot be seen as complete without a large-scale code review with in-depth
analysis of the multiple parts forming the project’s scope. As such, the goal was not to
reach  extensive  coverage,  but  to  gain  an  impression  about  the  overall  quality  of
node_exporter and determine which parts of the project's scope deserve thorough audits
in the future.

Later chapters in this report will also elaborate on what was being inspected, why and
with which implications for the node_exporter metrics collector.

Cure53, Berlin · 07/20/20                              5/20

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Phase 1: General security posture checks
This Phase is meant to provide a more detailed overview of the node_exporter project’s
security properties, which are seen as somewhat separate from both the code and the
node_exporter software. 

The first few subsections of a posture audit focus on more abstract components of a
specific  project  instead  of  judging  the  code  quality  itself.  Later  subsections  look  at
elements that are linked more strongly to the organizational and team-level aspect of
node_exporter. In addition to the items presented below, the Cure53 team also focused
on  the  following  tasks  to  be  able  to  conduct  a  cross-comparative  analysis  of  all
observations.

• The documentation was examined to understand all  provided functionality and
acquire examples of what a real-world deployment of node_exporter looks like.

• The main control  flow of  the node_exporter  application  was followed and the
main structure of the codebase has been analyzed.

• High-level code audits have been conducted. This was necessary to get a quick
impression of the overall style and to reach an understanding of which areas are
interesting for a more deep-dive approach in Phase 2 of the audit.

• Normally, past vulnerability reports in node_exporter would have been checked
out to spot interesting areas that suffered in the past. However, node_exporter
never received a vulnerability report.

• Concluding on the steps above, the project’s maturity was evaluated;  specific
questions about the software were compiled from a general catalogue according
to individual applicability.

Application/Service/Project Specifics
In this section, Cure53 describes the areas which were inspected for having insight into
the application-specific  aspects  that  lead  to  a  good  security  posture.  These  include
choice of programming language, selection and oversight of external third-party libraries,
as well as other technical aspects like logging, monitoring, test coverage and access
control.

Language Specifics

Programming languages can provide functions that pose an inherent security risk and
their use is either deprecated or discouraged. For example, strcpy() in C has led to many
security issues in the past and should be avoided altogether. Another example would be
the manual construction of SQL queries versus the usage of prepared statements. The
choice of language and enforcing the usage of proper API functions are therefore crucial
for the overall security of the project.

Cure53, Berlin · 07/20/20                              6/20

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

node_exporter is written in Go, which inherently provides memory safety and broadly
offers a higher level of security in comparison to e.g. C/C++. This is further underlined by
only making use of the Go’s unsafe package if absolutely necessary, in particular when
obtaining system metrics. While some collectors have native C code embedded, user
input does not reach those sinks. The code is written with best practices in mind, helping
not only with auditing, but also with maintenance. The above indicators contribute to a
healthy security posture and seem well-understood and properly distributed throughout
the node_exporter codebase. Specific examples include:

• Nesting being avoided by handling errors first;
• Separating test-cases from code;
• Keeping documentation/items concise;
• Separating independent packages;
• Avoiding unnecessary repetitions.

External Libraries & Frameworks

While external libraries and frameworks can also contain vulnerabilities, it is nonetheless
beneficial to rely on sophisticated libraries instead of reinventing the wheel with every
project. This is especially true for cryptographic implementations, since those are known
to be prone to errors.

As  almost  every  project,  node_exporter  makes  use  of  external  libraries  and  avoids
reimplementing  existing  solutions.  For  example,  several  Prometheus  packages  are
utilized  to  read  information  from the  procfs and  to  format  the  output  properly.  The
integrated web server is provided by the net/http package. No concerns were found to
be  present  in  the  used  third-party  packages  in  general.  All  appear  to  be  widely
recognized by the community and to be under active development.

Configuration Concerns

Complex and adaptable software systems usually have many variable options which can
be configured accordingly to the actually deployed application requirements. While this is
a very flexible approach, it also leaves immense room for mistakes. As such, it often
creates the need for additional and detailed documentation, in particular when it comes
to security.

More to the point, node_exporter allows to enable and disable the individual collectors
via the configuration, letting users choose which metrics are being exposed. Additionally,
it is possible to configure TLS certificates and to set up mandatory user credentials.

In a default configuration, a subset of the collectors is enabled but no further mitigations
are active. This comes due to the fact that SSL certificates and passwords cannot be

Cure53, Berlin · 07/20/20                              7/20

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

shipped pre-configured and must be generated individually by the user. However, the
benefits of having this additional layer of security should be more visible in the project's
documentation.

The included startup scripts execute the daemon as a dedicated user where possible,
which  has  been  properly  adopted  by  widely  used  Linux  distros  like  Archlinux and
Debian. This further limits the risk for privilege escalations as local attackers would not
gain anything by targeting the node_exporter.

Access Control

Whenever an application needs to perform a privileged action, it is crucial that an access
control  model  is  in  place,  to  ensure  that  appropriate  permissions  are  present.
Furthermore, if  the application provides an external interface for interaction purposes,
some form of separation and individual access control may be required.

Obtainable  system  metrics  can  be  specified  via  the  configuration  file  and  extra
parameters on startup. Furthermore, it  is possible to prevent unauthorized access by
adding  user  credentials  to  the  configuration.  User-based  permissions  cannot  be
configured and credentials will always give access to all enabled metrics, which is not
necessarily a bad thing for a small application like node_exporter. If demand for a more
fine-grained configuration arises, it can still be implemented.

Logging/Monitoring

Having  a  good  logging/monitoring  system  in  place  allows  developers  and  users  to
identify potential issues more easily, or get a rough idea of what is going wrong. It can
also provide security-relevant information, for example when a verification of a signature
fails.  Consequently,  having  such  a  system in  place  has  a  positive  influence  on  the
project.

In this realm, node_exporter has an integrated logger which has four different verbosity
levels ranging from  Debug to  Error. While a configuration set to  Error only monitored
events are logged,  Debug logs  every execution  of  the collectors.  However,  it  is  not
possible to log client IP addresses, and even failed authentications can go unnoticed.
For  administrators  who  need  to  monitor  the  service  itself,  such  metrics  would  be
important in order to detect potential attacks.

Unit/Regression and Fuzz-Testing

While tests are essential for any project, their importance grows with the scale of the
endeavor. Especially for large-scale compounds, testing ensures that functionality is not
broken by code changes. Furthermore, it generally facilitates the premise where features
function  the  way  they  are  supposed  to.  Regression  tests  also  help  guarantee  that

Cure53, Berlin · 07/20/20                              8/20

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

previously disclosed vulnerabilities do not get reintroduced into the codebase. Testing is
therefore essential for the overall security of the project.

Test cases cover the core functionality of node_exporter, including the web server and
the TLS configuration in addition to a few collectors. While the most important aspects
are tested, it cannot be said that full coverage is achieved, leaving room to improve in
terms of testing.

The application is written in a language that is generally memory safe and does almost
no parsing of contents an unprivileged user can control. These two factors eliminate the
need for fuzzing.

Documentation

Good documentation contributes greatly to the overall state of the project. It can ease
the workflow and ensure final quality of the code. Having a coding guideline which is
strictly enforced during the patch review process for example, ensures that the code is
readable and can be easily understood by a spectrum of developers. Following good
conventions can also reduce the risk of introducing bugs and vulnerabilities to the code.

There are two different documentation pages for the node_exporter project. While the
documentation  hosted  on  the  Prometheus  project  page1 focuses  on installation  and
usage, the README2 mainly describes the collectors. Notes on securing the service are
not part of the main README and easy to overlook if not explicitly searched for. As a
secure standard configuration  is  infeasible  in  this  context,  the  documentation  should
state clearly that the node_exporter service is not protected by default and can be used
by anyone with network access.  

Organization/Team/Infrastructure Specifics

This section  will  describe the areas Cure53 looked at  to find out  about  the security
qualities of the node_exporter project which cannot be linked to the code and software
but rather encompass handling of incidents. As such, it tackles the level of preparedness
for critical bug reports within the node_exporter development team.

In addition, Cure53 also investigated the degree of community involvement, i.e. through
the use of bug bounty programs. While a good level of code quality is paramount for a
good security posture, the processes and implementations around it can also make a
difference in the final assessment of the security posture.

1 https://prometheus.io/docs/guides/node-exporter/
2 https://github.com/prometheus/node_exporter/blob/master/README.md

Cure53, Berlin · 07/20/20                              9/20

https://cure53.de/
https://github.com/prometheus/node_exporter/blob/master/README.md
https://prometheus.io/docs/guides/node-exporter/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Security Contact

To ensure a secure and responsible disclosure of security vulnerabilities, it is important
to have a dedicated point of contact. This person/team should be known, meaning that
all necessary information such as an email address and preferably also encryption keys
of that contact should be communicated appropriately.

The  MAINTAINERS3 file  lists  email  addresses  of  project  maintainers  that  can  be
contacted to report  vulnerabilities,  but there is no specific guideline on how to report
security issues in node_exporter.  Furthermore, the document omits important details,
such as the respective PGP keys and an outline of the disclosure process. Although the
PGP keys can be obtained from public  key servers it  is  advised to link them in the
document.  It  is  recommended  to  put  all  details  related  to  reporting  and  disclosing
security issues in a dedicated SECURITY file in the project's repository.

Security Fix Handling

When fixing vulnerabilities in a public repository, it should not be obvious that a particular
commit addresses a security issue. Moreover, the commit message should not give a
detailed explanation of the issue. This would allow an attacker to construct an exploit
based on the patch and the provided commit message prior to the public disclosure of
the vulnerability. This means that there is a window of opportunity for attackers between
public  disclosure  and  widespread  patching  or  updating  of  vulnerable  systems.
Additionally,  as part of the public disclosure process, a system should be in place to
notify users about fixed vulnerabilities.

At this point in time, it cannot be evaluated how security fixes are handled and how they
are disclosed. This is because there are no public vulnerability reports, no CVEs and
none of the commits mentions that a security issue was fixed.

Bug Bounty

Having a bug bounty program acts as a great incentive in rewarding researchers and
getting them interested in projects. Especially for large and complex projects that require
a lot of time to get familiar with the codebase, bug bounties work on the basis of the
potential reward for efforts.

The node_exporter project does not have a bug bounty program at present, however this
should not be strictly viewed in a negative way. This is because bug bounty programs
require  additional  resources and management,  which are not  always  a  given  for  all
projects. However, if resources become available, establishing a bug bounty program for

3 https://github.com/prometheus/node_exporter/blob/master/MAINTAINERS.md

Cure53, Berlin · 07/20/20                              10/20

https://cure53.de/
https://github.com/prometheus/node_exporter/blob/master/MAINTAINERS.md
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

node_exporter should be considered. It is believed that such a program could provide a
lot of value to the project.

Bug Tracking & Review Process

A system for tracking bug reports or issues is essential for prioritizing and delegating
work. Additionally, having a review process ensures that no unintentional code, possibly
malicious, is introduced into the codebase. This makes good tracking and review into
two core characteristics of a healthy codebase.

Bug reports are handled via the GitHub issue tracker but no exhaustive guideline on how
to file tickets exists.  There is however a GitHub specific issue template which states
what to include in a report.

Users can submit small fixes to the node_exporter project via pull requests on GitHub
but larger contributions should be discussed on the mailing list first. The corresponding
workflow is explained in the project's CONTRIBUTING file, which is considered suitable
for open source projects. Contributions are reviewed by node_exporter maintainers in
order to prevent the submission of malicious or dysfunctional code.

Evaluating the Overall Posture
The overall security posture of the node_exporter project still has some room to improve
but there is no reason to be concerned as the related items are easy to address. By
improving the documentation in terms of security, adding details for security reports and
expanding the logging of the service itself, the most important flaws can be resolved. A
few parts  of  the posture  audit  were  found inapplicable.  How node_exporter  handles
vulnerability reports and disclosure processes for example, will remain to be seen in the
future.

Choosing Go has been a great  decision and automatically  reduces the potential  for
introducing  memory  safety-related  issues.  The  fact  that  almost  no  user  input  from
remote sources is parsed, and the small attack surface in general, makes it difficult for
potential  intruders  to  run meaningful  attacks.  Furthermore,  running  the service  as  a
dedicated user eliminates the risk of potential local privilege escalations.

Cure53, Berlin · 07/20/20                              11/20

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Phase 2: Manual code auditing & pentesting
This section comments on the code auditing coverage within areas of special interest
and documents the steps undertaken during the second phase of the audit against the
node_exporter software complex.

• node_exporter was audited from multiple angles, so that different attack models
could be covered including local and remote adversaries.  

• One of the developer's main concerns was the TLS implementation and if any
leaks can occur. This part was thoroughly audited in order to find potential flaws
that could lead to man-in-the-middle attacks.

• The code that handles the HTTP Basic authentication was examined to ensure
that no obvious bypasses are possible as well.

• Further investigations targeted the server itself, aiming to find flaws which could
lead to information leakage or even a takeover of the system. Since there is
basically only one parameter that can be remotely provided, there is not much
potential for remote attacks.

• The possibility of local privilege escalations was checked, but as node_exporter
suggests running the service as a dedicated user and modern Linux distributions
follow suit, there is very little an attacker could gain from such an attempt.

• The node_exporter code was also inspected for stability and if the failure of a
single collector can render the entire application useless.

• Some of  the  collectors  embed native  C code  for  direct  interactions  with  the
operating  system.  The  relevant  sections  were  checked  for  potential  memory
safety issues.

• The  status  server  component  was  checked  in  regard  to  the  exposed  HTTP
endpoints.  One  of  two  debug  endpoints  (/debug/pprof/heap)  could  potentially
lead to leaking sensitive heap information.

Cure53, Berlin · 07/20/20                              12/20

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of  severity  and impact.  The  aforementioned  severity  rank  is  simply  given in
brackets  following  the  title  heading  for  each  vulnerability.  Every  vulnerability  is
additionally given a unique identifier (e.g. PRM-02-001) for the purpose of facilitating any
future follow-up correspondence.

PRM-02-002 Web: Reflected XSS on MSIE due to unsanitized parameter (Low)
It  was  discovered  that  the  collect parameter  is  directly  reflected  inside  of  an  error
message in case the given collector does not exist. All responses from the web server
have the content type set to  text/plain making exploitation of XSS vulnerabilities much
more difficult  as modern web browsers will  not evaluate HTML in this context. There
exists an edge case however, where  MSIE11 on Windows 7 still renders HTML even
with a text/plain content type. This is described in more detail in the Cure53’s Browser
Security White Paper4:

“The first edge case here is a frame redirect working on MSIE11. It is possible to
cause XSS from within an application/json response by loading it in an iframe
that uses a very fast navigation pattern. This approach would confuse MSIE11
about the actual Content-Type - which is benign JSON in this case - and have it
rendered as HTML instead.”

Given how difficult this issue is to actually exploit, and how minor the impact of an XSS
attack for this case would be, the severity of the flaw has been set to  Low.  A sample
payload for exploiting the issue is shown below.

poc.eml:
<meta http-equiv="X-UA-Compatible" content="IE=5">
<iframe src="http://target:9100/metrics?collect[]=AAA<?
PXML><html:script>alert(1)</
html:script>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA"></iframe>

4 https://github.com/cure53/browser-sec-whitepaper

Cure53, Berlin · 07/20/20                              13/20

https://cure53.de/
https://github.com/cure53/browser-sec-whitepaper
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

It is recommended to set X-Frame-Options, X-Content-Type-Options and other security-
relevant headers as pointed out in PRM-02-001. More importantly, the HTML characters
must be encoded in the response.

PRM-02-005 TLS: Insecure TLS versions accepted (High)
It  was  observed  that  node_exporter  mandates  a  user-provided  TLS  configuration  in
order to enable transport security, and that the aforementioned configuration accepts
values which allow TLS variants known to be insecure, such as TLS 1.0 and TLS 1.1.

TLS 1.0 and TLS 1.1 are known to be broken5, having recently been removed entirely
from Mozilla Firefox6 and Google Chrome7. Accepting user configurations for TLS 1.0
and TLS 1.1 constitutes an unnecessary security risk.

Affected File:
https/tls_config.go

Affected Code:
func Listen(server *http.Server, tlsConfigPath string, logger log.Logger) error 
{

if tlsConfigPath == "" {
level.Info(logger).Log("msg", "TLS is disabled and it

cannot be enabled on the fly.", "http2", false)
return server.ListenAndServe()

}
if err := validateUsers(tlsConfigPath); err != nil {

return err
}
// Setup basic authentication.
var handler http.Handler = http.DefaultServeMux
if server.Handler != nil {

handler = server.Handler
}
server.Handler = &userAuthRoundtrip{

tlsConfigPath: tlsConfigPath,
logger:        logger,
handler:       handler,

}
c, err := getConfig(tlsConfigPath)

[...]
func getConfig(configPath string) (*Config, error) {

content, err := ioutil.ReadFile(configPath)
if err != nil {

5 https://www.comodo.com/e-commerce/ssl-certificates/tls-1-deprecation.php
6 https://hacks.mozilla.org/2020/02/its-the-boot-for-tls-1-0-and-tls-1-1/
7 https://www.chromestatus.com/feature/5759116003770368

Cure53, Berlin · 07/20/20                              14/20

https://cure53.de/
https://www.chromestatus.com/feature/5759116003770368
https://hacks.mozilla.org/2020/02/its-the-boot-for-tls-1-0-and-tls-1-1/
https://www.comodo.com/e-commerce/ssl-certificates/tls-1-deprecation.php
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

return nil, err
}
c := &Config{

TLSConfig: TLSStruct{
MinVersion:               tls.VersionTLS12,
MaxVersion:               tls.VersionTLS13,
PreferServerCipherSuites: true,

},
HTTPConfig: HTTPStruct{HTTP2: true},

}
err = yaml.UnmarshalStrict(content, c)
return c, err

}

It is recommended that users be prohibited from specifying minimum and maximum TLS
versions at all, and the default value of TLS 1.2 being the minimum version and TLS 1.3
being  the  maximum  version  to  be  constantly  adopted  across  all  transport-secured
connections and configurations.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

PRM-02-001 Web: General HTTP security headers missing (Medium)
node_exporter is not meant to run as a standard web application and the content type
being set to text/plain renders lots of attacks infeasible. However, as the HTTP protocol
is  used,  many  web-based  attacks  still  apply  which  is  why  some  standard
countermeasures should be implemented.

It  was  found  that  the  node_exporter  web  server  is  missing  certain  HTTP  security
headers in HTTP responses. This does not directly lead to a security issue, yet it might
aid attackers in their efforts to exploit other problems. The following list enumerates the
headers that need to be reviewed to prevent this and similar flaws.

• X-Frame-Options: This header specifies whether the web page is allowed to be
framed. Although this header is known to prevent Clickjacking attacks, there are
many other attacks which can be achieved when a web page is frameable8. It is
recommended to set the value to either SAMEORIGIN or DENY.

8 https://cure53.de/xfo-clickjacking.pdf

Cure53, Berlin · 07/20/20                              15/20

https://cure53.de/
https://cure53.de/xfo-clickjacking.pdf
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

• Note that  the CSP framework offers similar  protection  to X-Frame-Options  in
ways that overcome some of the shortcomings of the aforementioned header. To
optimally protect users of older as well as modern browsers at the same time, it
is  recommended  to  consider  deploying  the  Content-Security-Policy:  frame-
ancestors 'none'; header as well.

• X-Content-Type-Options: This header determines whether the browser should
perform MIME Sniffing on the resource. The most common attack abusing the
lack of  this  header  is  tricking the browser  to render a resource as an HTML
document, effectively leading to Cross-Site-Scripting (XSS).

• X-XSS-Protection: This header specifies if the browser’s built-in XSS auditors
should  be  activated  (enabled  by  default).  Not  only  does  setting  this  header
prevent Reflected XSS, but also helps to avoid the attacks abusing the issues on
the XSS auditor itself with false positives, e.g. Universal XSS9 and similar. It is
recommended to set  the value to either 0 or  1;  mode=block.  Note that  most
modern browsers have stopped supporting XSS filters in general, so this header
is only relevant in case older browsers are supported by the web application in
scope.

• Strict-Transport-Security:  Without  the  HSTS  header,  a  MitM  attacker  could
attempt to perform channel downgrade attacks using readily available tools such
as  sslstrip10.  In  this  scenario  the attacker  would  proxy clear-text  traffic  to  the
victim-user and establish an SSL connection with the targeted website, stripping
all cookie security flags if needed. It is recommended to set up the header as
follows:  

Strict-Transport-Security: max-age=31536000; includeSubDomains;                    

Note: the HSTS preload flag has been left out as it is considered dangerous11.

Overall,  missing  security  headers  is  a  bad  practice  that  should  be  avoided.  It  is
recommended to add the following headers to every server response, including error
responses like 4xx items. More broadly, it is recommended to reiterate the importance of
having all HTTP headers set at a specific, shared and central place rather than setting
them randomly. This should either be handled by a load balancing server or a similar
infrastructure. If the latter is not possible, mitigation can be achieved by using the web
server configuration and a matching module.

9 http://www.slideshare.net/masatokinugawa/xxn-en
10 https://moxie.org/software/sslstrip/
11 https://www.tunetheweb.com/blog/dangerous-web-security-features/

Cure53, Berlin · 07/20/20                              16/20

https://cure53.de/
https://www.tunetheweb.com/blog/dangerous-web-security-features/
https://moxie.org/software/sslstrip/
http://www.slideshare.net/masatokinugawa/xxn-en
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

PRM-02-003 Collectors: Denial-of-Service in textfile collector via FIFO file (Low)
In  order  to  gather  metrics  that  are  not  covered  by  node_exporter  itself,  external
applications can provide data via text files placed in a designated directory. 

As the service blindly reads all files with a .prom extension, this feature can be abused to
cause  a  Denial-of-Service.  A  local  user  with  write  permissions  to  the  folder,  where
external metrics are fetched from, can create a FIFO file which blocks on reading and
renders the node_exporter service useless.  As this already requires an attacker with
relatively high privileges and due to the fact that a non-responsive metrics service could
increase the attacker's risk of being detected, the overall  impact of the issue is fairly
limited.

It  is  recommended  to  consider  blocking  special  files  like  pipes  completely  or  to
implement  a  timeout  that  prevents blocking FIFO devices  from causing  a  Denial-of-
Service.

PRM-02-004 Collectors: DoS in supervisord collector via invalid response (Low)
Metrics from supervisord can be fetched by providing node_exporter with an RFC-URL,
which is expected to return data in an XML format. It was discovered that a malicious
server can return data which crashes the node_exporter service due to an unexpected
data-type.  Shown below  is  a  response  that  contains  an integer  instead  of  an array
leading to this error:

RFC Response:
<methodResponse>
  <params>
    <param>
      <value>
        <int>1</int>
      </value>
    </param>
  </params>
</methodResponse>

Crash Log:
panic: interface conversion: interface {} is int, not xmlrpc.Array

goroutine 91 [running]:
github.com/prometheus/node_exporter/collector.
(*supervisordCollector).Update(0xc000413590, 0xc000429500, 0x56148983e560, 0x0)

github.com/prometheus/node_exporter/collector/supervisord.go:140 +0xd2f
github.com/prometheus/node_exporter/collector.execute(0x5614890dc790, 0xb, 
0x56148936d4a0, 0xc000413590, 0xc000429500, 0x56148936cc80, 0xc000033020)

Cure53, Berlin · 07/20/20                              17/20

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

github.com/prometheus/node_exporter/collector/collector.go:153 +0x86
github.com/prometheus/node_exporter/
collector.NodeCollector.Collect.func1(0xc000429500, 0xc0004134d0, 
0x56148936cc80, 0xc000033020, 0xc000492b30, 0x5614890dc790, 0xb, 0x56148936d4a0,
0xc000413590)

github.com/prometheus/node_exporter/collector/collector.go:144 +0x6f
created by github.com/prometheus/node_exporter/collector.NodeCollector.Collect

github.com/prometheus/node_exporter/collector/collector.go:143 +0x135

It is recommended to implement proper error handling for invalid RFC responses instead
of letting the application crash.

PRM-02-006 Web: Runtime profiling data exposed via pprof (Low)
It was discovered that the  net/http/pprof package is included in the application, which
gives  access to extensive  debugging information like  traces and memory mappings.
While  this  is  not  a  large  problem  on  its  own,  it  could  be  leveraged  favorably  in
combination with other, more severe vulnerabilities.

Accessing pprof profiler:
http://localhost:9100/debug/pprof/

It is recommended to disable the profiler in order to prevent the information leak. If there 
are cases where a process profiler is actually required, it is recommended to give users 
the option to disable the component via the configuration.

Cure53, Berlin · 07/20/20                              18/20

https://cure53.de/
http://localhost:9100/debug/pprof/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Conclusions
The results of this CNCF-funded assessment of the Prometheus node_exporter complex
point to both strengths and weaknesses of the test-targets. After spending ten days on
the scope in the summer of 2020, three members of the Cure53 team were unable to
spot a Critical-scoring problem, yet unveiled issues ranking as High.

To give some detailed feedback on the security posture of the node_exporter software
and  its  surroundings,  it  should  be  noted that  the  project  looked  at  both  the  overall
security standing of the complex and the application code. While flaws were found in
both areas, no major risks transpired. The Cure53’s evaluation of the general security
posture revealed that there is room to improve regarding security contacts and reporting
of security issues. Further, the insecure-by-default aspect should be explicitly stated in
the main documentation. Apart from these minor issues the overall posture made a good
impression given the small size of the project.

As argued in Logging/Monitoring, it is recommended to improve the logging mechanism
to include requests and especially failed authentication attempts. This would facilitate the
detection of intruders. Further, one of the key focus areas were potential  information
leaks via Man-in-the-Middle attacks which is why a lot of attention was paid to the TLS
handling of the project. In particular, the TLS component was fully reviewed. While the
configuration component was found to allow insecure variants of TLS (PRM-02-005), no
other issues were spotted.

It needs to be underscored that node_exporter relies on the HTTP protocol in order to
make  the  collected  information  available.  Therefore,  the  application  was  tested  for
common web vulnerabilities such as XSS. Despite the service not being meant as a web
application and the response content-type being set to  text/plain, standard web-based
flaws cannot be automatically excluded. As addressed in PRM-02-001, missing security
headers can still cause problems that allow for information leakage, e.g. via Clickjacking.
In a setup with Windows 7 and MSIE11, even XSS is possible, as described in PRM-02-
002.

Another  important  aspect  for  a  service  that  accepts  network  connections  is  the
robustness against attacks via parameters the user can specify. Since there is only one
parameter that can be controlled remotely (collect), there is almost no potential for such
flaws.  Further  tests  were  conducted  with  local  attackers  in  mind.  As  the  service  is
supposed  to  run  as  a  non-root  user,  privilege  escalation  flaws  would  be  relatively
uninteresting. No issues were found to allow gaining the privileges of the user capable of
executing the service.

Cure53, Berlin · 07/20/20                              19/20

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 
         D 10709 Berlin
         cure53.de · mario@cure53.de 

From  a  stability  perspective,  two  issues  were  found  that  could  render  the  service
dysfunctional. Issue  PRM-02-003 describes how a local user could block the  collector
under  the  right  conditions  and PRM-02-004 shows how a  rogue  supervisord  server
crashes node_collector completely. These should be addressed in due course.

All in all, it can be said that there are quite a few issues with both the general posture
and  the  project's  source  code  examined  by  Cure53  during  this  July  2020  project.
Simultaneously,  it  is  crucial  that  the  discovered  flaws  are  easy  to  address.  Most
importantly, no structural failures were spotted during the audit of node_exporter.

Cure53 would like to thank  Ben Kochie, and Richard Hartmann from the Prometheus
team as well  as Chris  Aniszczyk of The Linux Foundation,  for  their  excellent  project
coordination, support and assistance, both before and during this assignment. Special
gratitude also needs to be extended to The Linux Foundation for sponsoring this project.

Cure53, Berlin · 07/20/20                              20/20

https://cure53.de/
mailto:mario@cure53.de

	Security-Review Report node_exporter 07.2020
	Index
	Introduction
	Scope
	Test Methodology
	Phase 1: General security posture checks
	Phase 2: Manual code auditing

	Phase 1: General security posture checks
	Application/Service/Project Specifics
	Language Specifics
	External Libraries & Frameworks
	Configuration Concerns
	Access Control
	Logging/Monitoring
	Unit/Regression and Fuzz-Testing
	Documentation

	Organization/Team/Infrastructure Specifics
	Security Contact
	Security Fix Handling
	Bug Bounty
	Bug Tracking & Review Process

	Evaluating the Overall Posture

	Phase 2: Manual code auditing & pentesting
	Identified Vulnerabilities
	PRM-02-002 Web: Reflected XSS on MSIE due to unsanitized parameter (Low)
	PRM-02-005 TLS: Insecure TLS versions accepted (High)

	Miscellaneous Issues
	PRM-02-001 Web: General HTTP security headers missing (Medium)
	PRM-02-003 Collectors: Denial-of-Service in textfile collector via FIFO file (Low)
	PRM-02-004 Collectors: DoS in supervisord collector via invalid response (Low)
	PRM-02-006 Web: Runtime profiling data exposed via pprof (Low)

	Conclusions


